图书介绍

应用统计学丛书·结构方程模型 Mplus与应用 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

应用统计学丛书·结构方程模型 Mplus与应用 英文版
  • 王济川,王小倩著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040348286
  • 出版时间:2012
  • 标注页数:453页
  • 文件大小:85MB
  • 文件页数:464页
  • 主题词:统计分析-统计程序-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

应用统计学丛书·结构方程模型 Mplus与应用 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Model formulation2

1.1.1 Measurement model4

1.1.2 Structural model6

1.1.3 Model formulation in equations7

1.2 Model identification11

1.3 Model estimation14

1.4 Model evaluation17

1.5 Model modification23

1.6 Computer programs for SEM24

Appendix 1.A Expressing variances and covariances among observed variables as functions of model parameters25

Appendix 1.B Maximum likelihood function for SEM27

2 Confirmatory factor analysis29

2.1 Basics of CFA model30

2.2 CFA model with continuous indicators42

2.3 CFA model with non-normal and censored continuous indicators58

2.3.1 Testing non-normality58

2.3.2 CFA model with non-normal indicators59

2.3.3 CFA model with censored data65

2.4 CFA model with categorical indicators68

2.4.1 CFA model with binary indicators69

2.4.2 CFA model with ordered categorical indicators77

2.5 Higher order CFA model78

Appendix 2.A BSI-18 instrument86

Appendix 2.B Item reliability86

Appendix 2.C Cronbach's alpha coefficient88

Appendix 2.D Calculating probabilities using PROBIT regression coefficients88

3 Structural equations with latent variables90

3.1 MIMIC model90

3.2 Structural equation model119

3.3 Correcting for measurement errors in single indicator variables130

3.4 Testing interactions involving latent variables134

Appendix 3.A Influence of measurement errors139

4 Latent growth models for longitudinal data analysis141

4.1 Linear LGM142

4.2 Nonlinear LGM157

4.3 Multi-process LGM183

4.4 Two-part LGM188

4.5 LGM with categorical outcomes196

5 Multi-group modeling207

5.1 Multi-group CFA model208

5.1.1 Multi-group first-order CFA212

5.1.2 Multi-group second-order CFA245

5.2 Multi-group SEM model268

5.3 Multi-group LGM278

6 Mixture modeling289

6.1 LCA model290

6.1.1 Example of LCA296

6.1.2 Example of LCA model with covariates309

6.2 LTA model318

6.2.1 Example of LTA320

6.3 Growth mixture model340

6.3.1 Example of GMM342

6.4 Factor mixture model365

Appendix 6.A Including covariate in the LTA model375

7 Sample size for structural equation modeling391

7.1 The rules of thumb for sample size needed for SEM391

7.2 Satorra and Saris's method for sample size estimation393

7.2.1 Application of Satorra and Saris's method to CFA model394

7.2.2 Application of Satorra and Saris's method to LGM401

7.3 Monte Carlo simulation for sample size estimation405

7.3.1 Application of Monte Carlo simulation to CFA model406

7.3.2 Application of Monte Carlo simulation to LGM412

7.3.3 Application of Monte Carlo simulation to LGM with covariate415

7.3.4 Application of Monte Carlo simulation to LGM with missing values417

7.4 Estimate sample size for SEM based on model fit indices422

7.4.1 Application of MacCallum,Browne and Sugawara's method423

7.4.2 Application of Kim's method424

References429

Index447

热门推荐